R/pi_ctplot.R
pi_ctplot.Rd
The function for plotting the heatmap to evaluate the PPQ plan based on the specification test, given lower and upper specification limits.
pi_ctplot(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, n.batch, alpha, test.point)
attr.name | user-defined attribute name for PPQ assessment |
---|---|
attr.unit | user-defined attribute unit |
Llim | lower specification limit |
Ulim | upper specification limit |
mu | hypothetical mean of the attribute |
sigma | hypothetical standard deviation of the attribute |
n | sample size (number of locations) per batch |
n.batch | number of batches for passing PPQ during validation |
alpha | significant level for constructing the prediction interval. |
test.point | (optional) actual process data points for testing whether the processes pass PPQ |
Heatmap (or Contour Plot) for PPQ Assessment.
Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. Springer.
pi_pp
and pi_occurve
.
Yalin Zhu
if (FALSE) { ## Example verifying simulation resutls in the textbook page 249 mu <- seq(95, 105, 0.1) sigma <- seq(0.2, 3.5, 0.1) pi_ctplot(attr.name = "Composite Assay", attr.unit = "%LC", mu = mu, sigma = sigma, Llim=95, Ulim=105) mu <- seq(90, 110, 0.5) pi_ctplot(attr.name = "Composite Assay", attr.unit = "%LC", mu = mu, sigma = sigma, Llim=90, Ulim=110) mu <- seq(95,105,0.1) sigma <- seq(0.1,2.5,0.1) pi_ctplot(attr.name = "Sterile Concentration Assay", attr.unit = "%", mu = mu, sigma = sigma, Llim=95, Ulim=105) test <- data.frame(mean=c(97,98.3,102.5), sd=c(0.55, 1.5, 1.2)) pi_ctplot(attr.name = "Sterile Concentration Assay", attr.unit = "%", Llim=95, Ulim=105, mu = mu, sigma = sigma, test.point=test) }