`R/ti_occurve.R`

`ti_occurve.Rd`

The function for plotting the OC curve to show the PPQ plan based on the specification test, given lower and upper specification limits.

ti_occurve(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, n.batch, alpha, coverprob, side, add.reference, NV)

attr.name | user-defined attribute name |
---|---|

attr.unit | user-defined attribute unit |

Llim | lower specification limit |

Ulim | upper specification limit |

mu | hypothetical mean of the attribute |

sigma | hypothetical standard deviation of the attribute |

n | sample size (number of locations) per batch |

n.batch | number of batches for passing PPQ during validation |

alpha | significant level for constructing the tolerance interval. |

coverprob | coverage probability for constructing the tolerance interval |

side | whether a 1-sided or 2-sided tolerance interval is required (determined by side = 1 or side = 2, respectively). |

add.reference | logical; if |

NV | nominal volume for the specification test. |

OC curves for specification test and PPQ plan.

Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017).
Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry.
*Springer*.

`ti_pp`

and `rl_pp`

.

Yalin Zhu

if (FALSE) { ti_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%", mu=97, sigma=seq(0.1, 10, 0.1), Llim=95, Ulim=105, n=10, add.reference=TRUE) ti_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%", mu=100, sigma=seq(0.1, 10, 0.1), Llim=95, Ulim=105, n=10, add.reference=TRUE) ti_occurve(attr.name = "Extractable Volume", attr.unit = "% of NV=3mL", Llim = 100, Ulim = Inf, mu=102.5, sigma=seq(0.2, 6 ,0.05), n=40, alpha = 0.05, coverprob = 0.97, side=1, NV=3) ti_occurve(attr.name = "Extractable Volume", attr.unit = "% of NV=3mL", Llim = 100, Ulim = Inf, mu=102.5, sigma=seq(0.2, 6 ,0.05), n=40, alpha = 0.05, coverprob = 0.992, side=1, NV=3) }