The function for calculating the probability of passing critical quality attributes (CQA) PPQ test .

ti_pp(Llim, Ulim, mu, sigma, n, n.batch, alpha, coverprob, side)

## Arguments

Llim lower specification limit upper specification limit hypothetical mean of the attribute hypothetical standard deviation of the attribute sample size (number of locations) per batch number of batches for passing PPQ during validation significant level for constructing the tolerance interval coverage probability for constructing the tolerance interval whether a 1-sided or 2-sided tolerance interval is required (determined by side = 1 or side = 2, respectively).

## Value

A numeric value of the passing/acceptance probability

Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. Springer.

rl_pp.

Yalin Zhu

## Examples

ti_pp(sigma=0.5, mu=2.5, n=10, n.batch=1, Llim=1.5, Ulim=3.5, alpha=0.05)
#>  0.591041
sapply(X=c(0.1,0.5, 1,2,3,4,5,10), FUN = ti_pp, mu=97, n=10, Llim=95, Ulim=105,
n.batch=1, alpha=0.05)
#>  1.000000e+00 9.999914e-01 7.489382e-01 9.289979e-02 2.103286e-02
#>  7.162916e-03 2.456487e-03 1.597179e-05sapply(X=c(0.1,0.5, 1,2,3,4,5,10), FUN = ti_pp, mu=100, n=10, Llim=95, Ulim=105,
n.batch=1, alpha=0.05)
#>  1.000000e+00 1.000000e+00 1.000000e+00 9.018469e-01 2.971147e-01
#>  5.696332e-02 1.110079e-02 2.462045e-05