Weighted Simes test introduced by Benjamini and Hochberg (1997)
Usage
simes.on.subsets.test(
pvalues,
weights,
alpha = 0.05,
adjPValues = TRUE,
verbose = FALSE,
subsets,
subset,
...
)
Arguments
- pvalues
A numeric vector specifying the p-values.
- weights
A numeric vector of weights.
- alpha
A numeric specifying the maximal allowed type one error rate. If
adjPValues==TRUE
(default) the parameteralpha
is not used.- adjPValues
Logical scalar. If
TRUE
(the default) an adjusted p-value for the weighted test is returned. Otherwise ifadjPValues==FALSE
a logical value is returned whether the null hypothesis can be rejected.- verbose
Logical scalar. If
TRUE
verbose output is generated.- subsets
A list of subsets given by numeric vectors containing the indices of the elementary hypotheses for which the weighted Simes test is applicable.
- subset
A numeric vector containing the numbers of the indices of the currently tested elementary hypotheses.
- ...
Further arguments possibly passed by
gMCP
which will be used by other test procedures but not this one.
Details
As an additional argument a list of subsets must be provided, that states in which cases a Simes test is applicable (i.e. if all hypotheses to test belong to one of these subsets), e.g. subsets <- list(c("H1", "H2", "H3"), c("H4", "H5", "H6")) Trimmed Simes test for intersections of two hypotheses and otherwise weighted Bonferroni-test
Examples
simes.on.subsets.test(pvalues=c(0.1,0.2,0.05), weights=c(0.5,0.5,0))
#> [1] 0.2
simes.on.subsets.test(pvalues=c(0.1,0.2,0.05), weights=c(0.5,0.5,0), adjPValues=FALSE)
#> [1] FALSE
graph <- BonferroniHolm(4)
pvalues <- c(0.01, 0.05, 0.03, 0.02)
gMCP.extended(graph=graph, pvalues=pvalues, test=simes.on.subsets.test, subsets=list(1:2, 3:4))
#> gMCP-Result
#>
#> Initial graph:
#> A graphMCP graph
#> H1 (weight=0.25)
#> H2 (weight=0.25)
#> H3 (weight=0.25)
#> H4 (weight=0.25)
#> Edges:
#> H1 -( 0.333333333333333 )-> H2
#> H1 -( 0.333333333333333 )-> H3
#> H1 -( 0.333333333333333 )-> H4
#> H2 -( 0.333333333333333 )-> H1
#> H2 -( 0.333333333333333 )-> H3
#> H2 -( 0.333333333333333 )-> H4
#> H3 -( 0.333333333333333 )-> H1
#> H3 -( 0.333333333333333 )-> H2
#> H3 -( 0.333333333333333 )-> H4
#> H4 -( 0.333333333333333 )-> H1
#> H4 -( 0.333333333333333 )-> H2
#> H4 -( 0.333333333333333 )-> H3
#>
#>
#> P-values:
#> [1] 0.01 0.05 0.03 0.02
#>
#> Adjusted p-values:
#> [1] 0.04 0.06 0.06 0.06
#>
#> Alpha: 0.05
#>
#> Hypothesis rejected:
#> H1 H2 H3 H4
#> TRUE FALSE FALSE FALSE
#>
#> Final graph after 1 steps:
#> A graphMCP graph
#> H1 (rejected, weight=0)
#> H2 (weight=0.3333)
#> H3 (weight=0.3333)
#> H4 (weight=0.3333)
#> Edges:
#> H2 -( 0.5 )-> H3
#> H2 -( 0.5 )-> H4
#> H3 -( 0.5 )-> H2
#> H3 -( 0.5 )-> H4
#> H4 -( 0.5 )-> H2
#> H4 -( 0.5 )-> H3
#>